
REVIEW Open Access

Computer-aided imaging analysis in acute
ischemic stroke – background and clinical
applications
Yahia Mokli1, Johannes Pfaff2, Daniel Pinto dos Santos3, Christian Herweh2 and Simon Nagel1*

Abstract

Tools for medical image analysis have been developed to reduce the time needed to detect abnormalities and to
provide more accurate results. Particularly, tools based on artificial intelligence and machine learning techniques
have led to significant improvements in medical imaging interpretation in the last decade. Automatic evaluation of
acute ischemic stroke in medical imaging is one of the fields that witnessed a major development. Commercially
available products so far aim to identify (and quantify) the ischemic core, the ischemic penumbra, the site of arterial
occlusion and the collateral flow but they are not (yet) intended as standalone diagnostic tools. Their use can be
complementary; they are intended to support physicians’ interpretation of medical images and hence standardise
selection of patients for acute treatment. This review provides an introduction into the field of computer-aided diagnosis
and focuses on the automatic analysis of non-contrast-enhanced computed tomography, computed tomography
angiography and perfusion imaging. Future studies are necessary that allow the evaluation and comparison of different
imaging strategies and post-processing algorithms during the diagnosis process in patients with suspected acute
ischemic stroke; which may further facilitate the standardisation of treatment and stroke management.
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Background
The diagnosis of stroke is based on the clinical examin-
ation and also on different imaging technics. The differ-
entiation between haemorrhagic and ischemic stroke
and the detection of large vessel occlusions (LVO) repre-
sent key steps in determining the optimal therapy
regimen for the individual patient. Time is essential: the
faster the diagnosis is made, and the appropriate therapy
is initiated, the better the outcome of patients [1]. Many
tools for medical image analysis have been developed to
reduce the time needed to detect abnormalities and to
provide more accurate results. Particularly, tools based
on machine learning techniques have led to significant
improvements in medical imaging interpretation in the
last decade.
In the 1980s, a concept called computer-aided diagno-

sis (CAD) was introduced. Its primary intent was to

provide radiologists with a second opinion while reading
their cases [2]. CAD has seen remarkable developments,
and applications for all modalities of medical imaging
have been presented. Although CAD systems are widely
available, their implementation in clinical routine varies
with the clinical scenario in which they are applied. In
the first years following the emergent of CAD concept,
the majority of the developed algorithms focused on the
early detection of breast cancers on mammograms and
the detection of lung cancer on chest radiographs or
computed tomography. Currently, CAD systems are well
established for providing an aid diagnosis in stroke and
many other medical fields (Additional file 1).

CAD concept spectrum
CAD is strongly related to Artificial intelligence (AI), a
branch of computer science that has witnessed an
incredible development in the last few years. CAD and
automated computer diagnosis (ACD) are two concepts
with similar names but different meanings.
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CAD usually relies on a combination of interpret-
ation of medical images through computational algo-
rithms and the physicians’ evaluation of the medical
images. In this case, medical physicians are not re-
placed by an algorithm, but they use algorithms’ out-
put as a second opinion. The diagnosis and the final
decision are made at the end of the process by the
physicians [3]. This concept is useful particularly in
cases where physicians are less confident about the
diagnosis so that the final decision may be improved
by the use of algorithms’ results. However, it is worth
noting that this approach can have downsides as well,
and some studies suggest that users tend to become
less vigilant when aware that of the CAD results
while interpreting medical images [4].
ACD is based on computer algorithms only, and

the diagnosis is made directly by the algorithm. In
this case, the algorithm’s performance in a clinical
routine must be at least equal or better than the per-
formance of an average physician. Although computer
algorithms may easily exceed human performance in
many fields, developing such tools for the usage in
medical imaging remains a difficult task. More diffi-
cult is even the adequate assessment and validation of
CAD or ACD based algorithms.
In 2011 Goldenberg et al. presented another concept

of CAD for the usage in emergency medicine called
computer-aided simple triage (CAST), which performs
an analysis of medical images and sorts them into differ-
ent prioritisation’s categories. CAST systems should at-
tract the radiologists’ attention to acute and time-
sensitive critical cases [5].
Physicians use CAD systems as a support for their

decision-making process aiming to get better results in
the detection and interpretation of pathologies in med-
ical images. Evaluating the performance of CAD
schemes against a gold standard is usually not sufficient;
measuring the influence of CAD systems on the deci-
sions made by the physicians and on the general work-
flow in a clinical setting is also crucial. This influence
may be positive, and this could be mirrored by a de-
crease of time need to diagnosis establishment or an in-
crease in the detection rate of true subtle anomalies due
to CAD support. A negative influence may be marked
by an increase in false positive results due to the confu-
sion generated by the bias effect. Therefore, although
not easy, it is essential to study the effect of CAD sys-
tems on their users. For such studies, a large number of
physicians or radiologists is needed, and a comparison
between final results obtained by the physicians with or
without getting CAD support in different settings is
helpful to determine the impact of these tools on the
performance of the physicians, which is related to the
outcome of patients.

Classical and modern CAD algorithms
CAD algorithms are developed to perform tasks that
usually require human intelligence and aim at extracting
patterns from medical images and using these patterns
to perform a specific task like suggesting a diagnosis.
Pattern recognition and extraction requires prior iden-

tification of relevant image features. Classical multistep
CAD systems are based on conventional machine learn-
ing algorithms in which human-experts hand-engineer
these features. Classical CADs process data in multi-
steps (at least two: hand-encoded features extraction and
classification) [6].
Unlike these, modern CAD systems use representation

learning (RL) based algorithms, in which no manual fea-
ture encoding is necessary [7]. RL schemes determine
the best features to use while classifying the input data
on their own. Processing steps of modern CAD are
sometimes not distinguishable, because of their struc-
tural properties usually based on neuronal networks with
multiple hidden layers.
Deep learning (DL) is a subfield of RL, in which algo-

rithms get from simple features, like edges or textures, to
more complex features such as shapes or organs in their
learning process (Fig. 1a and b) [8, 9]. Through deep
learning astonishing results have been made possible in
previously very challenging visual tasks such as the Ima-
geNet challenge. Consequently, these methods have
already been successfully applied to the medical field, e.g.
for the detection of melanoma [10] and the detection of
intracranial haemorrhage [7].
Classical and modern CAD systems alike are usually

trained by using labelled data; this method is called super-
vised learning. The labelling is commonly done by a
human expert; the algorithm’s possible output-results in
this model are well defined. It is worth noting that this is a
crucial step in developing e.g. deep learning-based algo-
rithms. It can generally be said, that a larger dataset for
training should lead to a more robust algorithm that
would be less prone to overfitting and should be able to
perform better on previously unseen external data. How-
ever, large datasets are not easy to obtain, and labelling
large datasets is time-consuming if done by hand, but
prone to errors if done automatically. On the other hand,
unsupervised learning algorithms try to discover previ-
ously unknown patterns and structures in the unlabelled
input data without previous labelling. The algorithm
decides by itself how to cluster the data into different
subgroups. A combination of these two methods is called
semi-supervised learning, in which a large amount of
unlabelled data in conjunction with a usually small quan-
tity of labelled data are used [9]; this method could merge
benefits of both previously cited approaches (more accur-
acy as in supervised learning, and less time for data label-
ling as in unsupervised learning).
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Processing steps of CAD systems
Pattern recognition process in classical and modern
CAD medical algorithms usually follows three main
steps; however, getting through all these steps is not
mandatory. These main steps are: (i) preprocessing of
medical images – including segmentation and designa-
tion of regions of interest (ROI), (ii) extracting automat-
ically generated or hand-engineered features that are
predefined from human experts and finally (iii) data
classification based on these features (Fig. 2). Modern

CAD algorithms can present output data without neces-
sarily getting through all these steps; this was made pos-
sible after the introduction of neural networks with
multiple hidden layers.

(i) Preprocessing of medical images is essential to
simplify interpretation and the subsequent
processes. Different technics can be used, such as
image resizing and application of smoothing filters
for noise reduction.

Fig. 1 a A Venn diagram presenting that deep learning is a type of representation learning, which is a kind of machine learning, which is a
subfield of Artificial intelligence (adapted from [8]). b A summarised representation of the most common machine learning algorithms and
models. Sup L: Supervised learning: labelled data is used. Unsup L: Unsupervised learning: unlabeled data is used. Semi-supervised learning: a
mixture of supervised and unsupervised learning. Reinf L: Reinforcement learning: learning by doing (rewarding correct- and punishing wrong
actions). Rep L: Representation learning: automatic generation of features. DL: Deep learning: hierarchical representation learning
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(ii) During the feature extraction stage, the algorithms
determine the characteristic of objects or ROIs,
which can then be used in the classification step.
There are many feature extractors and they differ in
their processing method, time to extract features
and also their computational methods.

(iii)For the final classification task, the CAD system
can either perform simple two-class categorisations
or more refined multi-class categorisations. The
first one would only classify features in the medical
images in two categories, for example normal and
abnormal. The second one could classify the
obtained features into various categories and thus
provide differential diagnosis to some extent.

Commercial CAD applications in stroke field
Especially since the advent of deep learning, medical
image analysis using AI is a worldwide rapidly growing
market [11]. Several software tools have been made
commercially available that aim to support radiologists
and medical doctors in making more rapid and precise
decisions in the diagnosis of stroke, which could be
beneficial for patients’ outcome. Table 1 lists main
companies and their presented applications.
Many methods have been applicated to evaluate the

performance of CAD systems for commercialization.
Some examples of these methods are leave-one-out,
cross-validation, hold-out, and resubstitution. However
there is until now no standardized approach; trying to
solve this issue, the Computer Aided Detection in Diag-
nostic Imaging Subcommittee (CADSC) which is a com-
mittee initiated by the American Association of Physicists
in Medicine (AAPM) proposed some recommendations
on the methodology applicated in the evaluation of CAD
system performance.
Health authorities firmly regulate the commercialisa-

tion of medical devices and drugs. Medical softwares are
usually included under the medical devices category.
Software as a Medical Device (SaMD) is a new term

defined by the International Medical Device Regulators
Forum (IMDRF) for applications that are used without
being a part of a hardware medical device. These SaMD
have special regulations and validation processes, which
are adopted by the American Food and Drug Adminis-
tration (FDA). Within the European Economic Area,
medical softwares must obtain a certification mark (CE
Marking) demonstrating conformity with medical de-
vices regulations (MDR) approved by the European Par-
liament and Council before free commercialization. Of
note, some of these certification processes do not re-
quire the presentation of clinical validation data.

Non-contrast enhanced computed tomography
Signs of infarction
A non-contrast-enhanced computed tomography (NCCT)
brain scan is still the most widely available tool in acute
stroke imaging because it is easily accessible, inexpensive,
efficient, fast and reliably rules out haemorrhage. The
most accurate assessment of the early infarction is
obtained by diffusion-weighted magnetic resonance
imaging (DWI) [12]. However, DWI is not everywhere
available in the acute setting. Quantitative measurements
of acute infarct on NCCT are difficult in clinical routine,
since signs of infarction are more subtle and human
assessment is highly variable. Hence, the correct NCCT
interpretation of a patient with an acute ischemic stroke
before thrombolysis or thrombectomy requires training
and experience.
The probably first semi-automated approach to iden-

tify putative hypodensity within the middle cerebral
artery (MCA) territory was published in 2001. In the
following years, several other different computer-aided
detection schemes for cerebral ischemia on CT were
published. However, all of these papers described differ-
ent approaches and focused on the methodology of the
algorithms used; sample sizes were rather small and
rigorous comparisons against the current gold standard,
the interpretation of the scan by a neuroradiologist or

Fig. 2 Graphic representation of different processing phases in CAD systems. ML-CAD: Machine learning based computer-aided diagnosis; RL-
CAD: representation learning based computer-aided diagnosis; DL-CAD: Deep learning based computer-aided diagnosis. Preprocessing phase is
optional. (adapted from [8])
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Table 1 Overview of commercially available software applications for automated and semi-automated medical image analysis for
acute stroke diagnostics (Descriptions are based on information provided by the companies on their official websites. Some
companies also offer algorithm outside the ischemic stroke field; we listed them for completion but do not further discuss those)

Company Software Description

Aidoc Aidoc Head triages stroke patients using non-contrast CT scans by flagging suspected intracranial haemorrhages and
highlights cases that require immediate attention in worklist

Apollo Medical Imaging
Technology

CT Perfusion:
Stroke

CTP stroke module is a part of MIStar software package. It generates brain perfusion maps using
deconvolution algorithms together with Apollo’s noise reduction and motion artefact correction
technologies

DSC-MRI:
Stroke

DSC-MRI perfusion module is a part of MIStar software. It features both parametric curve analysis and
deconvolution algorithm for perfusion maps with easy identification of arterial input function

Brainomix e-ASPECTS assess the ASPECTSa score and volume of ischemia in non-contrast CT images

e-CTA standardizes the assessment of collaterals in CTA scans

inferVISION AI-CT (head) gets information about type of stroke (haemorrhagic or ischemic), determines location, volume and
severity of haemorrhagic strokes

iSchemaView RAPID CTA automatically provides CTA maps and identifies brain regions with reduced blood vessel density

RAPID CTP provides cerebral perfusion maps

RAPID MRI provides fully automated diffusion and perfusion maps

RAPID
ASPECTS

automatically identifies and scores regions with early ischemic changes using ASPECTS

JLK Inspection JBS-01 K Ischemic stroke subtype (TOASTb) classification solution based on MR images and clinical information
data

JBS-02 K Ischemic stroke severity (NIHSSc) prediction solution based on MR images, clinical information data and
3D hybrid artificial neural network technology

JBS-03 K Ischemic stroke prognosis (3-month mRSd) prediction solution based on MR images, clinical information
data and 3D hybrid artificial neural network technology

JBS-04 K Haemorrhagic stroke detection and classification solution based on CT images and 3D hybrid artificial
neural network technology

JBS-05 K Hyperacute ischemic stroke detection solution based on CT images and clinical information data

JBS-06 K Hyperacute ischemic stroke detection solution based on MRI, clinical information data and 3D hybrid
artificial neural network technology

JBA-01 K Aneurysm detection solution based on MR angiography, clinical information data and 3D hybrid artificial
neural network technology

Max-Q AI AccipioDx diagnostic tool that rules out the presence of intracranial haemorrhage in non-contrast CT scans

mbits mRay-Modul
veocore

Perfusion analysis tool

Nico.lab StrokeViewer provides analysis of relevant biomarkers from stroke imaging (NCCT, CTA, dynamic CTA and follow-up im-
aging). The following have been clinically validated: Haemorrhage detection and quantification, thrombus
identification and evaluation, collateral assessment, follow-up infarct volume quantification, ASPECTS (in
development)

Olea Medical Olea Sphere automatically computes core, penumbra and mismatch ratio in CT and MR perfusion images

Qure.ai qER detects critical abnormalities such as bleeds, fractures mass effect and midline shift, localizes them and
quantifies their severity in head CT

qQuant suite of quantification and progression monitoring products for CT and MRI scans (e.g. brain tumour
volume)

Viz.ai Viz LVO automatically identifies and triages suspected large vessel occlusion (LVO) strokes

Viz CTP automatically analyse CT perfusion images

Zebra Medical Vision AI1 All-In-One (AI1) Application with included algorithm for intracranial haemorrhage detection. AI1 detects
also other medical conditions like low bone mineral density, vertebral fractures and more

a ASPECTS: Alberta stroke programme early CT score
b TOAST: Trial of Org 10,172 in Acute Stroke Treatment
c NIHSS: NIH Stroke Scale
d mRS: modified Ranking Scale
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against DWI were missing (Additional file 1). Up to date,
only two commercial products are available that are
certified for use in clinical routine: the e-ASPECTS® soft-
ware from Brainomix Ltd. (Oxford, UK) and RAPID
ASPECTS® by iSchemaView (Menlo Park, USA).
Siemens developed another post-processing tool for

early ischemic change detection in CT using the
ASPECT score (syngo.via Frontier ASPECT Score Proto-
type V1_2_0, Siemens Healthcare GmbH, Erlangen,
Germany), which is not yet certified for clinical applica-
tion but has undergone comparison to the e-ASPECTS
software [13]. Here the authors found high agreement in
ASPECTS rating between two certified radiologists,
expert consensus reading of NCCT images, and e-
ASPECTS, but only low to moderate agreement to
Frontier-ASPECTS by Siemens.
e-ASPECTS, RAPID ASPECTS, as well as Frontier-

ASPECTS, are based on quantitative evaluation of early
focal ischemic damage by the Alberta Stroke Programme
Early CT Score (ASPECTS), which is a topographic
scoring system that divides the MCA territory into ten
areas of interest. Originally ASPECTS was calculated
within two prespecified slices through the level of the
basal ganglia and the level of supra-ganglionic structures
[14], while softwares are now integrating the whole brain
scan and visually highlight the damaged ASPECTS
region. e-ASPECTS from version 7 also displays acute
ischemic volume in millilitres illustrated by a coloured
heat map. The automated assessment overcomes the
significant intra- and interrater variability of ASPECTS
and hence standardizes the clinical application [15, 16].
Current guidelines recommend ASPECTS as an imaging
selection criterion for mechanical thrombectomy (MT)
in patients within 6 h from stroke onset [17].
While so far only one study on the performance of

RAPID ASPECTS has been published [18], there are
several studies on the performance of e-ASPECTS
within different settings and patient populations avail-
able [19–24]. All these studies indicate that these
algorithms can be better than non-stroke experts and at
least equal than experts in applying the ASPECTS to
patients with acute ischemic stroke, yet they are not
intended as a stand-alone diagnostic tool. Furthermore,
e-ASPECTS has been compared to CT perfusion with
regard to prediction of clinical outcome and final infarct
size in patients with large vessel occlusion undergoing
MT [25, 26]. The results of both studies suggest that
NCCT based infarct cores estimation can be an alterna-
tive to computed tomography perfusion (CTP) derived
infarct core estimation. Recently it was also shown that
e-ASPECTS ratings and further clinical criteria could be
successfully used to identify suitable candidates for MT
in patients with longer or unknown time windows [27].
Importantly, the only studies showing an increase of

physician’s performance before and after the aid of an
automated algorithm are available for e-ASPECTS [28]
and e-CTA® [29].

Hyperdense vessel sign
Hyperdense vessel sign (HDVS) on NCCT represents an
early marker of acute ischemic stroke caused by intra-
cranial arterial occlusion. HDVS is a radiological
phenomenon marked by an increase of vessel radioden-
sity on NCCT after an acute occlusion. HDVS can be
seen in various vascular diseases, including acute arterial
occlusion, acute arterial dissection, aneurysm rupture,
and acute venous thrombosis [30].
HDVS is most commonly reported in the MCA region;

this is because MCA territory is usually the most
affected cerebral region by ischemic stroke [31]. Also,
the MCA has a large diameter in comparison to other
intracerebral arteries and the majority of its branches
run parallel to the –commonly most reconstructed–
transverse imaging plan in cranial CT.
HDVS is highly specific (95%) and moderately sensi-

tive (55%) for arterial obstruction in acute ischemic
stroke; usage of thin-slicing improves the sensitivity
significantly [32]. However, physiological calcifications or
hyperdense structures outside cranial arteries are
frequent. Koo et al. defined some objective criteria of
MCA HDVS to differentiate it from normal MCA
vessels. These are: In NCCT, the density of the patho-
logical MCA should be superior to 43 Hounsfield units
(HU) and 1.2 times higher than the contralateral MCA
[33]. Lim et al. published a work about the value of
HDVS in detecting large vessel occlusions (LVO) in the
setting of neurological acute ischemic presentation,
especially for hospitals with no access to CT-
Angiography. They concluded that the HDVS has a high
sensitivity and specificity for recognizing LVO on thin-
slice NCCT in acute ischemic stroke patients presenting
with an NIHSS more than 10 and suspected occlusion of
MCA (M1 segment) or basilar artery [34].
Through its early visibility, already after vessel occlu-

sion and before upcoming pathological parenchymal
ischemic changes, it represents a perfect diagnostic aid
in time crucial acute stroke cases. Automating the
process of MCA or intracranial HDVS sign detection in
emergency imaging may accelerate the identification of
positive cases, especially in spoke centers without regu-
lar access to CTA. This could improve referral logistics
and reduce the time to acute treatment, e. g. mechanical
recanalization or systemic thrombolysis. Important
success elements of CAD of HDVS are: Acquisition of
high-quality cranial native CT, application of new recon-
struction methods like iterative model reconstruction to
reduce noise and improve diagnostic performance [35]
and using thin slicing to improve the sensitivity of
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HDVS. Studies suggest that potential algorithms can
achieve a sensitivity if up to 97,5% in detecting HDVS
(Additional file 1). Such software may also help also with
the triage and patients selection process for endovascu-
lar reperfusion therapy by notifying the medical team
within minutes [36].

CT angiography
Collateral assessment
Recent trials have demonstrated the therapeutic po-
tential of thrombectomy even in an extended time
window [37, 38]. Patients who can be treated success-
fully in such an extended time window are referred to
as “slow progressors” and it is thought that sufficient
collateral blood flow is the key essential to this
phenomenon [39]. In the acute stroke set-up, CTA
can visualise collateral flow independent of particular
arterial territories as compared to DSA. There are nu-
merous qualitative and semi-quantitative scales to
score collaterals [40] (collateral scores; CS). A com-
mon scoring system was established by Tan et al.
[41]. Here, the whole MCA territory is graded from 0
(no collaterals visible) to 3 (no difference to the
contralateral hemisphere). However, this score does
not take into account anatomic location and function-
ality and can cause considerable inter-observer vari-
ability [40]. As an alternative, anatomic regions like
those underlying the ASPECTS can be applied to
score collaterals [42] which has been shown to in-
crease the concordance between different readers in
comparison the NCCT-ASPECTS [43]. The fact that
different scores exist and are used in parallel is
mainly due to the fact that there is no “ground truth”
against which these scores could be validated. Infor-
mation from DSA examinations, which is the gold
standard for depiction of intracranial vessel, cannot
be compared immediately. This is because in CTA
contrast agent (CA) is given intravenously and
spreads systemically throughout the arterial vascula-
ture and can thereby reach the occluded territory in a
retrograde fashion.
As an alternative, validation can be done indirectly by

investigating the ability of a particular score to predict
the clinical outcome of the patient, appropriate therapy
(i.e. vessel recanalization) provided. Consequently, CTA-
based scoring of collaterals has proven to be predictive
not only for the success of recanalization but also for
clinical outcome in several MT studies [44–46]. Different
imaging patterns and patients outcomes dependent on
collateral flow are illustrated in Figs. 3 and 4.
It was also demonstrated that the timing of the CTA is

crucial for the assessment of collateral flow and that
acquisition in the late arterial or early venous phase
increases the specificity [47]. This is important since

arterial CTA typically aims at the early arterial phase
which could lead to an underestimation of collateral
flow.
The numerous different scores and the dependence on

acquisition techniques as well as individual parameters
such as blood pressure or cardiac ejection fraction all
can lead to considerable interrater variability in assessing
collateral flow on CTA images and standardisation
would be beneficial [48]. So far, there are only few
reports on automated analysis of CTA images in acute
stroke. Regarding automated analysis of collateral flow
using CTA images, Boers and colleagues [49] used data
from the MR CLEAN trial and compared automatically
assessed quantitative CS with those from the trial’s core
lab. They found a slightly but non-significantly better
outcome prediction by automated CS than by manual
scores.
There is a commercial software available from Braino-

mix called e-CTA® which is embedded in the company’s
e-Stroke Suite platform. It determines the Tan score and
also gives a percentage of vasculature detected in the af-
fected MCA territory as compared to the contralateral
side, similar to the aforementioned approach [49]. It has
been evaluated first in the CATS study [29]. Here it was
used to score single phase CTA images of 98 acute
stroke patients with LVO. The automated CS achieved a
high agreement with the consensus score from three
experienced neuroradiologists and knowledge of the
automated CS also significantly increased the interrater
agreement between the three experts. In another study,
using single phase CTAs from 235 acute stroke patients
undergoing MT, CS from e-CTA were compared with
those from two blinded neuroradiologists against an
expert-based ground truth. Here, e-CTA again reached a
similar level of agreement with ground truth as the pro-
fessionals [50].

Large vessel occlusion
Another application of machine learning algorithms to
acute LVO CTA is automated detection of the occlusion.
In contrast to CS, where automatization can overcome
interrater variability, the advantage is different from
LVO detection, since experts are not really challenged.
However, less experienced physicians in primary care
institutions will depend on the correct detection of an
LVO when deciding to refer a patient to a comprehen-
sive stroke centre or not. Technically, such an approach
is straight forward as algorithms such as the “region
growing” approach can be employed here. There are two
reports on this issue so far. In the ALADIN study,
Barreira and colleagues used a commercial software
employing an AI-based algorithm (Viz LVO, Viz.ai, San
Francisco, USA), in 875 patients with 46% LVO and
compared the results against an expert-based ground
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truth [51, 52]. They report an accuracy of 86%, sensitiv-
ity of 90.1% & specificity of 82.5 for the software which
took under 5 min. Seker et al. [53] used a machine
learning algorithm developed by Brainomix in 144
acute stroke patients of whom 73 had an LVO and
MT. Here, the algorithm reached accuracy, sensitivity
and specificity of 90, 91 and 90%, respectively, when
compared against ground truth. The average duration
for each analysis was below 1 min. Furthermore, this
performance was similar to that of two blinded
neuroradiologists.
Automated analysis of CTA using AI-based algorithms

can have several advantages in acute stroke imaging: i)
interrater variability can be reduced to increase objectiv-
ity, ii) less experienced physicians can get support in
diagnosing LVO and collateral flow and iii) decision
making in stroke treatment can be accelerated. As with

human reading, however, timing of the arrival of con-
trast is pivotal here, too.

Perfusion imaging
Perfusion imaging can be performed with either CT or
MRI. Whereas NCCT can only identify early ischemic
changes, which – if present – are generally not revers-
ible and turn into final infarction, perfusion imaging, like
DWI has the chance to estimate the ischemic core even
before ischemic changes can be seen on NCCT, in the
very early time window. Furthermore perfusion imaging
can visualize tissue at risk that might be rescuable. Per-
fusion imaging is a depiction of the passage of blood or
fluids through the vessels of an organ or tissue to allow
quantification. It enables visualisation of regions of ab-
normal cerebral hemodynamics and quantifies the effect
of interfering situations, such as a preceding stenosis or

Fig. 3 Acute LVO with insufficient collateral flow and extended infarction despite successful recanalization: An 84-year-old woman suffered from
an acute hemiparesis (NIHSS 14) due to an M1 right-sided M1-occlusion. e-ASPECTS (a) was 8 due to early signs of infarction in the caudate head
and lentiform nucleus, e-CTA collateral score (b) was 1 (21%), and there was a large area of hypoperfusion with an only moderate mismatch (c).
Neurological deficit persisted (NIHSS 12) despite full recanalization (mTICI 3) within 5 h from symptom onset and follow up NCCT at 24 h (d)
shows near complete infarction of the MCA territory. Note the difference of the arterial vessels (b, blue colour) compared to the opposite side as
well as the reduced parenchymal contrast (b, orange cloud) on the affected side
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an occlusion. The main principle of contrast-enhanced
perfusion imaging is to monitor the first pass of a bolus
of contrast agent through the cerebral circulation.

Perfusion imaging parameters
In order to derive information from perfusion maps, it is
important to define specific imaging parameters. Cere-
bral blood volume (CBV) is commonly referred to a vol-
ume of blood in a given region of brain tissue as per
millilitres per 100 g of brain tissue [54]. Cerebral blood
flow (CBF) is a certain amount of blood volume passing
to a defined volume of brain tissue in a given period of
time. This is usually expressed as millilitres of blood per
minute per 100 g of brain tissue [54].
Mean transit time (MTT) is the average time (in sec-

onds) a certain volume of blood takes to pass through a
given volume of brain [54]. MTT is calculated by divid-
ing CBV by CBF. Time to peak (TTP) is the time it takes
an IV-injected bolus of contrast material to reach its

peak in a given region of the brain, also commonly mea-
sured in seconds.

Perfusion imaging pitfalls
Physicians need to be aware of major pitfalls that could
lead to a falsified or useless perfusion imaging:

(i) The bolus needs to be recorded during the whole
passage through the brain including the arterial,
parenchymal and venous phase. As perfusion
imaging acquisition usually takes only 40 to 60 s, a
common pitfall occurs, for example, in patients
with decreased cardiac output which leads to a
delayed or slow increase in arterial input shifting
the bolus curve to the end of imaging acquisition.

(ii) By placing the intravenous access very peripherally,
for example in the back of the hand or foot of the
patient, the contrast agent takes more time to reach
the brain for imaging acquisition (see paragraph

Fig. 4 Acute LVO with sufficient collateral flow, successful recanalization and good outcome: A 77-year-old woman suffered from an acute
hemiparesis and aphasia (NIHSS 17) due to an left-sided M1 occlusion. As in case 1, e-ASPECTS (a) was 8 with the caudate head and lentiform
nucleus being affected, but e-CTA collateral score was 2 (54%, b), and the hypoperfused area (c) is considerably smaller. Again, full recanalization
(mTICI 3) could be achieved within 5 h from symptom onset, and the patient recovered completely (NIHSS 0). Follow up MRI at 36 h (d) shows
incomplete infarction of the striate only
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above) and the bolus gets diluted until it reaches
the brain vessels. Therefore the increase in contrast
agent is diminished, which leads to inaccurate
perfusion maps, specifically to underestimated CBF
and overestimated MTT, mimicking hypoperfusion.

In order to evaluate the quality of the perfusion data
and to assess the reliability of the post-processing results,
both situations need to be taken account for using the ar-
terial input function (AIF) and venous output function
(VOF) profiles during imaging post-processing.
Computer-assisted imaging algorithms usually provide
AIF and VOF profiles automatically. Moreover, “head
shaking” head movement can be corrected for by using
the midline of the brain. If, however, the patient moves his
head within the longitudinal axis (in a figurative sense say-
ing “yes”, nodding), the sections of the brain change the
level or imaging slice and voxels usually cannot be reas-
signed properly during imaging postprocessing.

Defining the ‘ischemic core’ and ‘tissue at risk’ using DWI,
MR-perfusion (MRP) and CTP
Over the years, there have been several different ap-
proaches to distinguish normal tissue from hypoper-
fused, viable tissue (‘tissue at risk’) from nonviable tissue
(‘ischemic core’) using CT- and MR-perfusion imaging.
Correspondingly, numerous thresholds have been advo-
cated [55]. Using CTP, the ischemic core is defined as a
region with a substantial reduction in CBF with respect
to the healthy contralateral hemisphere (rCBF). A sub-
stantial reduction is determined to be present as a re-
duced rCBF < 30% or 40%. DWI however, is recognised
as a gold standard to assess the infarct core based on ap-
parent diffusion coefficient (ADC) thresholds between <
0.6–0.62 × 10–3mm2/s. (see the Additional file 1). For
CTP and MR Perfusion, a delay in time to peak perfu-
sion longer than 6 s (Tmax > 6 s) is considered to be a
reliable predictor of the tissue at risk [56–59]. In a small
patient cohort, Lin et al. could demonstrate that CTP
and MR Perfusion could be used interchangeably if
Tmax = 4 to 6 s measurements were used [60].
The amount of absolute (ml) or relative mismatch be-

tween ischemic core and tissue at risk varies within
studies [61, 62], but a mismatch ratio of > 1.2 has been
used in numerous prospective randomised controlled
stroke trials (see the Additional file 1). However, other
trials – DEFUSE 3, Solitaire™ FR With the Intention For
Thrombectomy as Primary Endovascular Treatment for
Acute Ischemic Stroke (SWIFT PRIME) trial – used a
tighter mismatch ratio of ≥1.8 [63, 64]. Although the
mismatch ratio originates from trials using MRP for pa-
tient selection, it is generally accepted to identify pa-
tients for reperfusion therapies based on CTP using an
rCBF/Tmax mismatch ratio of > 1.2 [64, 65].

Computerised assessment of perfusion imaging
Post-processing software estimates perfusion parameters
based on above mentioned brain perfusion principles
using deconvolution of tissue and arterial signals (e.g.
singular value decomposition (SVD) deconvolution
method, methods using Bayes theorem) in perfusion im-
aging (incl. co-registration with DWI images in MRI)
with specified thresholds for an automated segmentation
and quantification of the infarct core and the tissue at
risk [66, 67]. For MRI, in order to reduce false-positive
detection of ADC lesions of otherwise healthy tissue au-
tomated, infarct core volumetry within the tissue at risk
can be used [68].
Because of different post-processing algorithms and

thresholds – results differ among commercially available
fully automated software even when using identical
source data [69, 70]. Physicians need to be aware of this
circumstance, especially in difficult decision-making sit-
uations or when treating acute stroke patients and perfu-
sion results are somewhere in between against or in
favour of a specific treatment. Yet, automated analysis
seems to outperform human thresholding and analysis
of CTP data [71].
Recently, a different approach has been used to either

improve or replace previous software solutions. By using
machine learning methods, i.e. deep learning techniques
using neural networks, the infarct core volume and tis-
sue at risk can be predicted directly from the CTP or
MRP source images. Additional metadata – such as the
time parameters and treatment – could further increase
prediction accuracy and might even predict infarct
growth over time or depending on treatment modality
(see the Additional file 1).

Perfusion imaging softwares in clinical trials
There are several vendors, respectively software prod-
ucts for post-processing of CT and MR perfusion im-
ages available; some of them are listed in Table 1.
Since there are so many software solutions, it is diffi-
cult to list all of them and their validation within
smaller studies or trials. Vendor-specific software usu-
ally has the advantage that thresholds can be chosen
at the discretion of the radiologist evaluating the im-
ages. This, however, makes it prone to interrater vari-
ability leaving quantitative values – if provided by the
software – hardly comparable.
The RApid processing of PerfusIon and Diffusion

[RAPID] software (iSchemaView) – a commercial soft-
ware solution – has been used and is currently used in a
number of large stroke trials (see Table 2). However,
prominent trials using RAPID – EXTEND-IA, DEFUS 3
and DAWN and DEFUSE 3 – only included 70, 182, re-
spectively 206 patients. Furthermore, all these trials did
not evaluate the performance of the software. As there
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are no studies or trials directly comparing their im-
pact on patient outcome depending on the specific
imaging post-processing results, it remains unclear
whether available software solutions are interchange-
able. Such trials, allowing inclusion of patients by
multiple vendor products appear to be mandatory to
further improve imaging evaluation and make its re-
sults more generalizable.

Conclusion
Automated image analysis of ischemic stroke with the
support of machine learning or artificial intelligence
related algorithms is a constantly growing market.
Commercially and non-commercially available CAD
products so far focus on the analysis of NCCT, CTA
and perfusion imaging, based on CT or MR imaging.
They aim to identify and quantify the ischemic core,
the ischemic penumbra, the status of collateral flow
and the site of arterial occlusion in an automatic
fashion.
CAD algorithms are not intended as standalone diag-

nostic tools, however, they assist physicians to get more
accurate and standardised interpretations of stroke re-
lated findings, which may improve the stroke manage-
ment and patients’ selection for appropriate (usually
time critical) treatments.
Future clinical studies are necessary for proper valid-

ation, evaluation and comparison of the different avail-
able software solutions in order to broaden and
generalise treatment selection criteria for patients with
acute ischemic stroke. Furthermore, future studies may
focus on the integration of CAD algorithms within the
workflow of stroke referral networks.

Additional file

Additional file 1: Supplementary Appendix. (DOCX 102 kb)
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