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Abstract 

Background Despite high recanalization rates of > 90% after endovascular thrombectomy (EVT) clinical outcome 
in around 50% of treated acute ischemic stroke (AIS) patients is still poor. Novel treatments augmenting the beneficial 
effects of recanalization are eagerly awaited, but this requires mechanistic insights to explain and overcome futile 
recanalization.

Main body At least two mechanisms contribute to futile recanalization after cerebral large vessel occlusions (LVO): (i) 
the no reflow phenomenon as evidenced by randomly distributed areas without return of blood flow despite reperfu-
sion of large cerebral arteries, and (ii) ischemia/reperfusion (I/R) injury, the paradoxically harmful aspect of blood flow 
return in transiently ischemic organs. There is accumulating evidence from experimental stroke models that platelets 
and leukocytes interact and partly obstruct the microvasculature under LVO, and that platelet-driven inflammation 
(designated thrombo-inflammation) extends into the reperfusion phase and causes I/R injury. Blocking of platelet 
glycoprotein receptors (GP) Ib and GPVI ameliorated inflammation and I/R injury providing novel therapeutic options. 
Recently, MRI studies confirmed a significant, up to 40% infarct expansion after recanalization in AIS thereby proof-
ing the existance of I/R injury in the human brain. Moreover, analysis of minute samples of ischemic arterial blood 
aspirated directly from the pial cerebral collateral circulation under LVO during the routine EVT procedure confirmed 
platelet activation and platelet-driven leukocyte accumulation in AIS and, thus, the principal transferability of patho-
physiological stroke mechanisms from rodents to man. Two recently published clinical phase 1b/2a trials targeted 
(thrombo-) inflammation in AIS: The ACTIMIS trial targeting platelet GPVI by glenzocimab provided encouraging 
safety signals in AIS similar to the ApTOLL trial targeting toll-like receptor 4, a central receptor guiding stroke-induced 
innate immunity. However, both studies were not powered to show clinical efficacy.

Conclusions The fact that the significance of I/R injury in AIS has recently been formally established and given the 
decisive role of platelet-leukocytes interactions herein, new avenues for adjunct stroke treatments emerge. Adjusted 
study designs to increase the probability of success are of outmost importance and we look forward from what can 
be learned from the so far unpublished, presumbably negative ACTISAFE and MOST trials.
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Background
Stroke is the second leading cause of death and the third 
frequent cause of permanent disability worldwide. Despite 
more effective prevention measures absolute stroke num-
bers constantly increase due to the aging population and 
an increasing life expectancy in developing countries [53]. 
In acute ischemic stroke (AIS) the most effective therapeu-
tic measure has been rapid reconstitution of blood flow 
by recanalization [30]. Recanalization can be achieved by 
pharmacological thrombolysis induced by systemic appli-
cation of tissue plasminogen activator (t-PA) or more 
recently tenecteplase with a broad indication not depend-
ing on the demonstration of an occluded major cerebral 
artery [4, 13] and/or by endovascular thrombectomy (EVT) 
which relies on the presence of a large vessel occlusion 
(LVO) amenable to mechanical thrombus retrieval [30]. 
Thrombolysis and EVT have been constantly refined and 
the time windows extended. Full recanalization rates by 
EVT (indicated by modified treatment in cerebral ischemia 
(mTICI) scale grades ≥ 2b [73]) reach about 90%, but even 
after technically successful EVT, the individual prognosis of 
LVO-stroke remains poor with only about 35–55% favora-
ble outcome and 14–28% mortality at 3  months [47, 71]. 
Recanalization obviously is a prerequisite for a better func-
tional outcome, but a large group of treated patients expe-
rience futile recanalization. Thus, there is an urgent need to 
develop add-on treatments beyond recanalization [45, 65, 
69]. Possible reasons for futile recanalization have for long 
been identified in experimental stroke models and, among 
others, two principal mechanisms emerged: the no reflow 
phenomenon [5] and ischemia/reperfusion (I/R) injury 
[21, 50] which are both partly driven by platelet-leukocyte 
interactions and interrelated [64]. In 2011, we coined the 
term “thrombo-inflammation” to designate platelet-driven 
inflammation which is of fundamental pathophysiologi-
cal importance particularly in AIS (see below) [49, 64]. In 
the following we will (i) briefly describe how the concept 
of thrombo-inflammation as key feature of I/R injury 
emerged from experimental stroke models, (ii) review 
recent evidence for infarct progression despite full recanal-
ization (I/R injury) in human AIS, (iii) summarize evidence 
for intravascular platelet-driven inflammation commenc-
ing under LVO in human stroke patients, and (iv) discuss 
the results of recently completed, inflammation-related 
clinical trials.

Main text
The impact of thrombo‑inflammation on the no 
reflow phenomenon and ischemia/reperfusion injury 
in experimental stroke
No reflow phenomenon
The observation that blood does not flow despite reca-
nalization has been termed no reflow phenomenon [5]. 

Ames et al. in 1968 demonstrated that relief of obstruc-
tion following prolonged cerebral ischemia in rabbits did 
not restore normal blood flow as indicated by randomly 
distributed hypoperfused pale brain regions when colloid 
carbon was systemically applied [5]. It has been proposed 
that during ischemia the luminal surface of endothelium 
within the microvasculature eventually converts from an 
anticoagulant to a procoagulant membrane [31]. In sup-
port of this view deposits of radioactively labeled plate-
lets were detectable in ischemic basal ganglia very early 
during reperfusion in a primate model of transient mid-
dle cerebral artery occlusion (tMCAO) [16]. Electron 
microscopic examination of the microvasculature within 
the ischemic region further demonstrated aggregates of 
degranulated platelets together with fibrin and leuko-
cytes and provided direct evidence that platelet activa-
tion occurs in the ischemic zone [15, 51]. Recently, the 
presence of leukocytes and platelet-leukocyte aggre-
gates partly, but not completely obstructing microves-
sels has been confirmed by modern imaging modalities 
[19]. In support of this concept, we could further show 
that platelets tether to the vessel wall via binding of the 
platelet receptor glycoprotein (GP) Ib to von Willebrand 
factor [57], and then become activated by GPVI/colla-
gen and/or GPVI/fibrin(ogen)  interactions during cer-
ebral ischemia in a rodent model under MCAO already 
before recanalization (Fig. 1A) [8]. Functionally, blocking 
of GPIb [57] or depletion of GPVI [8] attenuated infarct 
growth under LVO before recanalization and reduced the 
intravascular accumulation of leukocytes. Thus, intra-
vascular platelet-leukocyte interactions emerge already 
under LVO and may partly explain the no reflow phe-
nomenon upon recanalization [66]. Further components 
potentially involved in the no reflow phenomenon have 
been reviewed in detail recently elsewhere [63].

Ischemia/reperfusion (I/R) injury
In experimental animals cerebral infarcts further grow 
and maturate within the following 24 h despite full reca-
nalization as shown in the widely used transient MCAO 
model [9, 28]. In general, the paradoxically harmful 
aspect of blood flow return in transiently ischemic organs 
has been termed I/R injury and applies to many other 
organs such as the heart, kidney, lung and liver [21, 31]. 
While many additional factors such as oxidative stress, 
protein synthesis suppression, apoptosis, disruption of 
the neurovascular unit may contribute to I/R injury as 
discussed in detail elsewhere [7, 50], we here focus on 
platelet activation and leukocyte infiltration.

In mice, a short MCA occlusion time of only one hour 
finally leads to a complete infarction of the MCA terri-
tory developing during reperfusion [9]. An elegant study 
employing light sheet microscopy by Göb et al. [28] could 
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show that despite recanalization induced by retract-
ing the MCA occluding filament at one hour, complete 
MCA infarcts gradually developed in mice within the 
following 8  h, but, surprisingly, at that time no signifi-
cant thrombus formation occurred within the ischemic 
hemisphere. Intravascular thrombi were regularly detect-
able only later at 23  h after transient MCAO long after 
infarct development. This strongly indicates that infarct 
growth after recanalization (I/R injury) cannot primar-
ily be driven by re-thrombosis of re-perfused cerebral 
macro- and microvessels, but is at least partly due to a 
detrimental interaction between platelets, immune and 
endothelial cells designated thrombo-inflammation [49, 
64]. In contrast to firm thrombus formation, in which 

GPIIb/IIIa-mediated platelet aggregation is manda-
tory, platelet GPIb and GPVI in I/R injury guide inflam-
mation after cerebral ischemia without involvement of 
GPIIb/IIIa signaling [37]. Blocking of platelet GPIb or 
GPVI not only attenuated infarct growth under LVO 
before recanalization as described above, but, moreo-
ver, largely protected mice from cerebral I/R injury after 
recanalization and thereby improved clinical outcomes 
[37, 58, 60]. This indicates a continuum of platelet activa-
tion amenable to treatment starting already during LVO, 
but continuing despite recanalization and causing I/R 
injury. Importantly, no bleeding complications were seen 
upon GPIb or GPVI blockade [37, 42, 60] in contrast to 
the futile treatment with anti-GPIIb/IIIa Fab fragments 

Fig. 1 Signaling pathways of thrombo-inflammation in acute ischemic stroke as novel targets for treatment. A illustrates thrombo-inflammation 
as it denotes the complex interaction between platelets and neutrophils/T-cells leading to tissue injury without requiring thrombus formation. 
During cerebral artery occlusion as well as in the reperfusion phase platelets tether by binding of GPIb to von Willebrand Factor (vWF) exposed 
on the hypoxic endothelial surface, and in a second step, become activated via GPVI binding to fibrin(ogen), collagen and/or other unknown 
ligands. This leads to platelet release of α-granules, which contain the chemokines CXCL4, CXCL7 as well as damage-associated molecular patterns 
(DAMPs) such as HMGB1 among others. CXCL7 is a potent chemoattractant for neutrophils, and CXCL4 can induce granule release from neutrophils, 
including the secretion of MMP9. HMGB1 is a potent inducer of NET formation. MMP9 and NETosis can cause disruption of the blood–brain 
barrier and perivascular tissue damage. In addition, T-cells interact with platelets via CD84, a homophilic cell adhesion molecule, and by so far 
unknown effector mechanisms aggravate infarct progression. B highlights targets of emerging anti-thrombo-inflammatory treatments: EMA601 
and glenzocimab block GPVI signaling and/or binding while ApTOLL is a TLR4 antagonist. TLR4 is strongly expressed on neutrophils and serves 
as a major receptor for DAMPs, such as HMGB1. TLR4 signaling can induce NETosis in neutrophils. Figure created with BioRender.com
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or humanized antibodies leading to severe intracranial 
hemorrhages (ICH) both in experimental [37] and clini-
cal [2] stroke.

Functionally, platelets during I/R injury primarily drive 
inflammation (e.g. T-cell and neutrophil responses) 
rather than (re-) thrombus formation (Fig.  1A). This 
notion is further supported by stroke experiments in 
immune-deficient mice. Rag1−/− mice lacking T- and 
B-cells are protected from I/R injury after transient 
MCAO [38, 72]. Upon adoptive transfer of T-, but not 
B-cells, Rag1−/− mice are fully susceptible to I/R injury 
again. Importantly, the detrimental effect of T-cells does 
not require recognition of a specific antigen, but depends 
on the presence of platelets [36]. Recently, CD84, a 
homophilic cell adhesion molecule could be identi-
fied as the mechanistic link between detrimental effects 
of T-cells and platelets in stroke (Fig.  1A) [61]. During 
human stroke, CD84 is shed from the surface of platelets 
and, in vitro, soluble CD84 increases T cell mobility via 
homophilic CD84-CD84 interactions.

Neutrophils are the predominant leukocytes rapidly 
accumulating within the intravascular cerebral com-
partment and with a delay > 24  h infiltrate the ischemic 
brain parenchyma in experimental and human AIS [22, 
41, 66, 70]. Platelets can activate neutrophils in particular 
upon platelet-neutrophil aggregate formation. Activated 
neutrophils expel neutrophil extracellular traps (NET) 
(Fig.  1A,B) which represent extracellular DNA lattices 
trapping pathogens during host defense to combat infec-
tions [62], but also platelets and coagulation factors with 
ensuing thrombus formation. NET formation occurs 
in experimental and human stroke and contributes to 
ischemic lesion development [17, 68]. Thereby, platelet 
derived high-mobility group box  1 (HMGB1) is instru-
mental, underpinning the important role of platelet-neu-
trophil interactions in AIS. Accordingly, treatment with 
a neonatal NET inhibitory factor reduced I/R injury and 
ameliorated clinical outcome in a mouse tMCAO model 
[17].

The expression of the Toll like receptor (TLR) 4 on 
neutrophils [18] provides a possible link between plate-
let HMGB1 release and neutrophil activation including 
NET formation (Fig.  1B). TLR4 is critically involved in 
the induction of innate immune responses and usually 
activated by bacteria-released lipopolysaccharide dur-
ing infections, but also damage-associated molecular 
patterns (DAMPs) such as HMGB1 [6]. Local HMGB1 
concentrations are significantly increased in experimen-
tal and clinical stroke [17,  59]. TLR4 deficient mice are 
protected from I/R injury in stroke [12]. Since TLR4 is 
expressed on many cell types beyond leukocytes includ-
ing neurons interpretation of the beneficial result is 
difficult, but there is one intriguing observation: In 

Tlr4−/− mice, paradoxically higher numbers of neutro-
phils had infiltrated the ischemic brain 48 h after stroke 
compared with WT mice [26]. However, TLR4 deficiency 
increased the levels of alternatively polarized N2 neutro-
phils with neuroprotective features in ischemic lesions. 
Thus, it appears that TLR4 signaling fosters detrimental 
N1 neutrophil responses, while TLR4 deficiency sup-
ports polarization towards a beneficial N2 phenotype 
[26]. The disparity of neutrophil populations during dif-
ferent stages of infarct development and reorganization 
may explain the controversial net effects of gross neutro-
phil depletion on outcomes described in experimental 
stroke models and the treatment failures when targeting 
neutrophil migration in human AIS [35, 46, 56].

Although the effector pathways of these complex 
T-cell and neutrophil responses in AIS await further 
elucidation, there is accumulating evidence that plate-
lets guide this inflammation by engagement of GPIb and 
GPVI receptors and granule release (including HMGB1) 
beyond thrombus formation in experimental and clinical 
stroke which provides novel therapeutic perspectives (see 
below) (Fig. 1A,B).

Evidence for cerebral infarct expansion 
despite recanalization (I/R injury) in human stroke
At present it is difficult to assess and quantify the extent 
of the no reflow phenomenon post recanalization in 
human stroke [63]. In contrast, the existence and signifi-
cant impact of I/R injury has recently been proven [33, 
54, 55]. Given the major and well documented impact of 
I/R injury on progressive organ dysfunction in the rep-
erfused heart, lung, liver and kidney [21] it is surprising 
that cerebral I/R injury has long been neglected/ques-
tionend [27]. The establishment of EVT in 2015/2016 
as a standard treatment in AIS upon LVO profoundly 
changed the scientific scene and enabled sequential 
magnetic resonance imaging (MRI) studies on stroke 
progression appropriately controlled for the degree of 
recanalization achieved [30]. EVT requires routine angi-
ography during the procedure and thereby enables pre-
cise grading of individual recanalization success e.g. by 
the mTICI score. Three recent MRI studies reported the 
development of infarct expansion in AIS patients meas-
ured shortly before or after EVT and during follow-up 
covering the reperfusion phase.

Sah and colleagues [55] compared lesion volumes on 
MR-diffusion weighted images (DWI) obtained at 5  h 
(initial posttreatment) and 24 h (follow-up) after EVT in 
33 AIS patients and described a measurable growth of 
the DWI lesion even in patients with the best recanali-
zation on digital subtraction angiography post thrombec-
tomy of mTICI-3. These findings were confirmed and 
extended by Rex and colleagues [54] in a larger cohort 
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showing a lesion expansion on DWI-MRI on average of 
39% in 151 patients between 2 and 24 h after EVT which 
was seen in 88% of patients. Interestingly, relative lesion 
expansion was consistent across all TICI categories, but 
greater absolute lesion expansion as typically seen in 
patients with large infarctions before EVT was associ-
ated with worse outcome. Finally, Hernandez-Perez and 
colleagues [33] in a prospective study performed DWI-
MRI on arrival at the hospital (pre-EVT), ≤ 2  h after 
EVT (post-EVT) and on day 5 in 98 AIS patients. For the 
whole cohort median DWI volumes pre-EVT, post-EVT, 
and at 5  days were 12, 20 and 25  cc, respectively, indi-
cating infarct grow before recanalization under LVO as 
well as after recanalization even in patients who achieved 
mTICI 3. The extent of late infarct growth in the available 
77 patients was larger in those with higher NIHSS scores 
at baseline. Collectively, these studies showed a substan-
tial increase in infarct volumes up to 40% despite suc-
cessful recanalization in human AIS which, in principle, 
has been predicted from experimental stroke models. At 
present, it is unclear which mechanisms drive secondary 
infarct progression after recanalization in human stroke, 
but it is likely that similar to rodent stroke I/R injury 
involving thrombo-inflammation is a key element [50, 64]

Evidence for leukocyte accumulation and local platelet 
activation in pial blood samples in human stroke
From the above mentioned studies on I/R injury in 
human stroke the question arises whether the mechanis-
tic findings in experimental stroke also apply to humans. 
Obviously it is not possible to analyse brain tissue directly 
at ultra-early time points in AIS patients, but EVT opens 
a diagnostic window. It is possible to acquire minute 
samples of ischemic arterial blood aspirated directly 
from the pial cerebral collateral circulation by navigat-
ing a microcatheter through the embolic occlusive lesion 
immediately before EVT [25, 41]. As control a second 
sample is taken at the level of the internal carotid artery 
under physiological non-occlusive flow conditions. Com-
paring platelet responses and leukocyte counts between 
these paired individual samples allows the assessment of 
intravascular thrombo-inflammation within the secluded 
ischemic brain provisionally nourished by pial collateral 
blood flow. As main finding we detected a substantial 
increase in the number of neutrophils in the pial blood 
samples indicating an accumulating local inflammatory 
response [41, 74]. Moreover, there were significantly 
increased concentrations of platelet-derived neutro-
phil-activating chemokine CXC motif ligand (CXCL) 4 
(platelet factor 4) and CXCL7 (neutrophil-activating 2 
peptide) (Fig. 1A) [40]. While CXCL7 is a potent chem-
oattractant for neutrophils, CXCL4 induces neutrophil 
degranulation and increases their secretion of matrix 

metalloproteinase (MMP) 9 [10]. Interestingly, we also 
found increased local MMP9 plasma concentrations 
and an enhanced intracellular MMP9 expression within 
neutrophils by immunofluorescence [39]. MMP9 levels 
were predictive for the risk of major ICH and poor out-
come before EVT, providing evidence for the validity of 
ultra-early local stroke biomarkers. On a mechanistic 
level, MMP9 plays a major role in the breakdown of the 
blood–brain barrier in experimental cerebral ischemia 
[67]. Thus, it is likely that the early thrombo-inflamma-
tory response commencing under LVO and extending 
into the reperfusion phase as evidenced in experimental 
stroke significantly contributes to additional brain dam-
age beyond ischemia/hypoxia.

As mentioned above, platelets are an important source 
of HMGB1 [17], one of the most prevalent DAMPs which 
trigger sterile inflammation by activation of inflamma-
some pathways [29]. In pial occlusive intravascular sam-
ples local HMGB1 concentrations were increased by 
more than 30% in addition to another DAMP, calprotec-
tin (S100A8/A9) which is mainly released by leukocytes 
[59]. Moreover, systemic HMGB1 levels rapidly increased 
within 24 h in venous blood samples and independently 
predicted long term clinical outcome [34].

Taken together these data suggest a vicious cycle of 
platelet-leukocyte interactions in hyper-acute stroke 
patients in which local DAMP and chemokine/cytokine 
release by platelets (e.g. HMGB1, CXCL4, CXCL7) and 
leukocytes (e.g. S100A8/A9, MMP9) entertain neu-
roinflammation directly within the vascular compart-
ment and contribute to ischemic brain damage (Fig. 1A). 
Given that pharmaceutical substances such as t-PA reach 
the ischemic penumbra via pial collaterals in significant 
amounts under LVO [23], modifying this response may 
be feasible and promising. Results of recently completed 
trials targeting inflammation and/or secondary thrombus 
formation in AIS patients in combination with EVT and/
or thrombolysis are summarized below.

Recent clinical trials targeting I/R injury in acute ischemic 
stroke
The Acute Ischemic Stroke Interventional phase 1b/2a 
Trial (ACTIMS) targeted platelet GPVI by apply-
ing glenzocimab, a Fab fragment against human GPVI 
(Fig. 1B), within three hours after AIS onset in addition 
to alteplase with or without EVT [43]. After testing sev-
eral concentrations in a phase 1b safety analysis, a dose 
of 1000  mg was selected for the phase 2a involving 54 
patients receiving glenzocimab versus 52 patient placebo. 
In phase 2a the most frequent treatment-related overall 
adverse event was non-symptomatic hemorrhagic trans-
formation occurring in 31% of patients treated with glen-
zocimab, and even at a higher percentage of 50% in the 
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placebo group. No patient developed symptomatic ICH 
in the treatment group versus 10% in the placebo group. 
All-cause deaths were lower with glenzocimab (7% of 
patients) than in the placebo arm (21%). However, the 
highest dose of 1000 mg glenzocimab did not affect func-
tional autonomy and mortality at 90  days, but the trial 
was underpowered to assess efficacy. Results of the ensu-
ing clinical phase III trial (ACTISAVE) recruiting larger 
patient numbers and adequately powered were presented 
at the ESOC congress in Basel on May 15, 2024. Overall, 
the primary endpoint of clinical efficacy was not reached 
according to a press release by ACTICOR Biotech (Acti-
cor [1]). Since publication of the final results is still pend-
ing, at present it is not possible to draw firm conclusions. 
However, the relatively low affinity of glenzocimab for 
GPVI as revealed by a recent comparative in-vitro anal-
ysis [48] requiring high doses for full blockade of the 
GPVI receptor may have been an issue. Furthermore, 
the very short in vivo half-life of glenzocimab may have 
resulted in a loss of GPVI inhibition while thrombo-
inflammation was still ongoing. Novel GPVI inhibi-
tors with a > 50-fold potency compared to glenzocimab 
and a superior experimental pharmacodynamic profile 
(assessed in GPVI-humanised mice) are currently under 
preclinical development and hold the promise of a more 
efficient GPVI inhibition that is, importantly, not associ-
ated with an increased bleeding risk [44, 48]. Importantly, 
the ACTIMIS trial supports the notion from numerous 
experimental investigations in different organ systems 
such as brain and lung, that targeting GPVI is safe with-
out bleeding complications [11, 37, 48]. In their discus-
sion, Mazighi and colleagues concluded that targeting 
GPVI in AIS might have modulated thrombo-inflamma-
tion and the downstream microcirculation by a reperfu-
sion effect [43].

The Multi-Arm Optimizing of Stroke Thrombolysis 
(MOST) trial took a conventional approach. Based on the 
assumption that infarct growth after recanalization is due 
to re-embolization and/or local re-thrombosis the MOST 
trial evaluated the efficacy of adjunctive thrombolysis 
with the blood thinner, argatroban, a thrombin inhibi-
tor, and eptifibatide, a reversible GPIIb/IIIa antagonist 
[14]. The trial was halted early after the first 500 enrolled 
patients did not show improvement according to a press 
release [3]. Neither of the blood thinners improved dis-
ability based on the modified Rankin scale at 90  days 
after stroke onset. The detailed trial results have not yet 
been published limiting firm interpretation. However, 
the overall negative outcome appears in line with previ-
ous investigations in which blockade of platelet aggrega-
tion by GPIIb/IIIa antagonists failed both in the tMCAO 
model [37] and in a human phase III trial [2] mainly due 
to severe bleeding complications which have not been 

seen with inhibitors of platelet receptors dispensable for 
hemostasis, most notably GPVI antagonists [43, 48, 64]. 
Moreover, the MOST trial appears to further substanti-
ate experimental evidence that infarct progression after 
recanalization is not primarily due to re-thrombosis of 
the microvasculature, but to complex platelet-leukocyte 
interactions and other processes not requiring clot for-
mation as discussed above.

To modify inflammation-mediated infarct progres-
sion, the APRIL double blind, randomized, multicenter, 
placebo-controlled phase Ib/IIa trial targeted TLR4 by 
applying ApTOLL, a DNA aptamer (Fig. 1B) [32]. Aptam-
ers are single-stranded oligonucleotides that recognize 
and selectively bind target molecules with high specific-
ity and nanomolar affinity [20]. They can be chemically 
synthesized and are non-immunogenic. TLR4-binding 
DNA aptamers showed a protective effect against acute 
stroke in rodent MCAO models [24]. In the APRIL trial, 
after dose finding during phase 1b, two doses, 0.05 mg/
kg and 0.2 mg/kg of ApTOLL or placebo were adminis-
tered intravenously within 6 h of stroke onset in combi-
nation with EVT in AIS patients with an Alberta Stroke 
Program Early CT score of 6 to 10. The primary com-
posite endpoint was safety encompassing the incidence 
of death, sICH, malignant stroke and recurrent stroke 
and was reached in 16 of 55 patients (29%) receiving pla-
cebo but only in 6 of 42 patients (14%) receiving ApTOLL 
0.2 mg/kg. The APRIL trial was not powered to achieve 
definite results in regard to clinical efficacy, but the pre-
liminary data suggest a reduced mortality and disability 
at 90 days compared to placebo in the group treated with 
0.2 mg/kg ApTOLL [32] which awaits confirmation from 
larger trials.

Conclusions
The technical success rate of EVT in LVO stroke has 
reached a ceiling effect of > 90% recanalization, but treat-
ment effects are still modest/insufficient while leaving 
around 50% of eligible AIS patients with significant dis-
ability or death. Attempts to improve outcomes by con-
comitant anticoagulation and recanalization have largely 
failed, in particular due to excess bleeding complications 
[2]. Targeting platelet receptors dispensable for hemo-
stasis, but guiding inflammation such as GPVI [44, 48] 
or key effector receptors of stroke-related inflammation 
such as TLR4 [32], among others, are worth being pur-
sued clinically based on robust preclinical efficacy and 
clinical safety data. Adjusted study designs which exclude 
patients either with excellent outcomes after EVT or with 
large infarcts may increase the probability of success by 
enriching the study population which might benefit most 
from an adjunct treatment under investigation [52].
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