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Abstract 

Background  Mobility is crucial for participation and quality of life in individuals with sensorimotor impairments, 
yet scientific evidence on its course in real-world settings is limited. So-called wearables for measuring physical activ-
ity might help to overcome this knowledge gap allowing daily measurements of mobility. The aim of the present 
study is to examine the relationship between clinical walking tests and inertial measurement unit-based mobility 
tracking in the community setting of stroke and spinal cord injury (SCI) survivors.

Methods  At a single observational time point, the precision of the activity tracker was evaluated in a standardized 
parcours in healthy subjects and stroke or SCI survivors (n=57). This was followed by a multicenter observational 
cohort study (n=116 participants), in which the mobility of stroke and SCI survivors was assessed over 8 months 
immediately after discharge from acute inpatient rehabilitation. Daily distances covered in the community setting 
were recorded using the activity tracker. Established walking tests—including the 10-meter walk test (10MWT) 
and the timed up and go test (TUG)—were conducted at baseline, as well as at 4- and 8-month follow up visits. The 
relationship between daily distances in the ambulatory setting and 10MWT or TUG performance at discrete study vis-
its (baseline, 4 months (midterm), and 8 months (final) after hospital discharge) was analyzed using regression models.

Results  The precision of the activity tracker in measuring covered distance in a standardized parcours varied 
by mobility type. The highest precision was achieved in manual wheelchair users (deviation from zero: -1.5±1.03% 
(p=0.15) while the least favorable precision was observed in participants with SCI and significant walking impair-
ment (-14.6±2% (p<0.001). The widely used 10MWT speed showed a relationship with the ambulatory daily distance. 
The regression coefficients [m/(1m/s)] were: 874 (95% CI: 578-1171) at baseline (p<0.001), 895 (95% CI: 614-1176) 
at midterm (p<0.001), and 824 (95% CI: 537-1112) at the final visit (p<0.001). Interestingly, in the category of good 
walkers with the most favorable walking speeds the daily covered distance unmasked distinct subgroups with shorter 
and longer daily distances.
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Background
Regaining mobility is a primary goal in neurological reha-
bilitation, as it significantly impacts quality of life and 
social participation (Ezekiel et  al., 2019). However, little 
is known on how individuals with sensorimotor impair-
ments—whether walking or using a wheelchair—actually 
move in their daily lives after discharge from inpatient 
rehabilitation. This is particularly important because 
evidence suggests that mobility levels often decline once 
patients transition to community-based care, as seen in 
stroke survivors (Meyer et al., 2015).

Long-term studies assessing real-world mobility, meas-
ured in distance covered over months, are rare. Such data 
could provide valuable insights into both activity lev-
els and social participation (Corbett et  al., 2018). Most 
existing research relies on short-term activity monitor-
ing (4-7 days), primarily counting steps or general activ-
ity units (Duncan et al., 2011; Hale et al., 2008; Kluding 
et al., 2013; Lemay et al., 2012; Mahendran et al., 2016). 
With recent advancements in wearable technology for 
continuous activity tracking, there is now an opportunity 
to bridge this knowledge gap, especially as these devices 
become more widely used (Thompson, 2023).

Traditionally, mobility outcomes are assessed using 
standardized walking tests, such as the 10-meter walk 
test (10MWT), at specific time points following condi-
tions like stroke or spinal cord injury (SCI). While these 
tests effectively measure mobility capacity under con-
trolled conditions and correlate with short-term step 
counts (Bowden et al., 2008), their ability to reflect long-
term, real-world mobility after discharge remains unclear. 
This is particularly relevant for patients with moderate 
to good walking ability after stroke, where the ecologi-
cal validity of standardized clinical walking tests remains 
questionable (Stellmann et al., 2015). For SCI survivors, 
no such data exist.

This study aimed to explore the relationship between 
standardized clinical walking tests and decentralized 
daily tracking of ambulation in the community-envi-
ronment after inpatient rehabilitation in stroke and SCI 
survivors (Hug et  al., 2021). We compared real-world 
mobility data (“what the patient does”) with estab-
lished gait tests (“what the patient can do”), such as the 
10MWT and Timed Up and Go (TUG) test. A wearable 
IMU device, previously validated for mobility tracking in 

elderly individuals and patients with Parkinson’s disease 
or multiple sclerosis (Barth et  al., 2015; Flachenecker 
et  al., 2020; Klucken et  al., 2011) - was tested in stroke 
and SCI survivors, as well as healthy controls. The device 
was then used to record daily walking distances for eight 
months post-discharge. We analyzed these data for rela-
tionships with standardized walking tests (10MWT, 
TUG) performed in the clinical settings at three time 
points (0, 4, and 8 months after discharge).

Methods
The study was conducted as part of the NeuroMoves pro-
ject (Hug et al., 2021) and approved by the Ethics Com-
mittee of the Medical Faculty of Heidelberg University 
(Approval-IDs: S-084/2020, S-858/2019).

Study design and setting
In a first step, we used a cross-sectional design to assess 
the sensor precision for a standardized distance. The 
sensor was previously validated for mobility tracking in 
elderly individuals and patients with Parkinson’s dis-
ease or multiple sclerosis (Barth et  al., 2015; Flache-
necker et  al., 2020; Klucken et  al., 2011). Participants 
with incomplete SCI or stroke, treated at the Spinal Cord 
Injury Center and Kliniken Schmieder in Heidelberg, 
Germany, were enrolled, along with a control group of 
non-disabled subjects (NDS). Participants completed a 
fixed-length indoor course (parcours) of 250 (SCI, NDS) 
or 188 meters (stroke, NDS), differing due to institu-
tional conditions. The parcours included three sections: 
straight line, semicircle, figure-of-eight. In a second step, 
a multicenter (8 study sites) observational cohort design 
was used to follow up study participants with stroke 
or SCI in the community setting for a fixed period of 8 
months immediately after discharge from acute inpatient 
rehabilitation.

Study participants
For the first step, subjects were included if they were 
attributable to one of the following cohorts: Manual 
wheelchair users (stroke or SCI), electric wheelchair 
users (stroke or SCI), pedestrians with SCI, pedestrians 
with stroke, or NDS. A target sample size of n=10 per 
group was chosen based on theoretical considerations 

Conclusions  For SCI and stroke survivors, especially medium to fast walkers, activity tracking in real-world set-
tings adds valuable insight beyond clinical walking tests. Clinical studies on rehabilitative interventions for mobility 
improvement should consider real-life daily distance as a key endpoint.

Keywords  Spinal cord injury, Stroke, Everyday activity, Mobility, Walking distance, Wheelchair distance, Clinical 
walking tests, Ecological validation
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to best represent the mobility types in the NeuroMoves 
project, without formal sample size calculations.

For the second step, patients (18-85 years of age) 
diagnosed with SCI or stroke according to the Inter-
national Classification of Diseases (ICD)-10 criteria 
were eligible. Participants were screened, enrolled, and 
instructed regarding device use by study personnel at 
the clinical sites towards the end of the acute inpatient 
rehabilitation period. Sensor-based measurements 
started immediately after discharge.

Any study-related procedure was performed only 
after obtaining written informed consent from 
participants.

Data sources/ measurements
This study used the Mobile GaitLab system (Portabiles 
HealthCare Technologies, Nuremberg, Germany), 
comprising a sensor device for raw data acquisition 
and a tablet computer for data processing and backup. 
The IMU-based sensor includes a 3-axis gyroscope and 
a 3-axis accelerometer, recording data at 100 Hz. The 
device was mounted differently depending on mobility 
type: on the right wheel near the axle for wheelchair 
use (using adhesive tape) and on the dorsum of the foot 
for walking (using a clip holder attached to shoelaces 
or Velcro). Suitable for home monitoring (Barth 
et  al., 2015) the sensor stored raw data locally during 
measurements and transferred it to the tablet during 
charging. Computational algorithms processed the data 
offline to identify mobility type and calculate distances 
traveled using proprietary software.

Demographic, clinical, and walking tests data of the 
NeuroMoves cohort were collected at three discrete 
clinical visits at each participating clinical site (base-
line, 4 months (midterm), 8 months (final)). Both, the 
10MWT (Rossier & Wade, 2001) and the TUG (Pod-
siadlo & Richardson, 1991) were performed at each 
clinical visit. Only participants with walking capability 
were included in this part of the study. At each visit, 
the Functional Independence Measure (FIM) was per-
formed as a measure of functional independence. The 
total FIM score ranges from 18 to 126, with the motor 
FIM subscore ranging from 13 to 91 and the cogni-
tive FIM subscore ranging from 5 to 35 (Granger et al., 
1993). Daily walking distances were measured using the 
activity tracker. The tracker was recharged and its data 
backed up each evening. Raw data were transferred 
to a home tablet, preprocessed, and uploaded daily to 
a cloud-based study management system (SMS). Data 
uploads were monitored via software algorithms and 
regular phone contact with study personnel.

Variables
In participants with stroke, the degree of disability was 
assessed by the National Institute of Stroke Scale 
(NIHSS) (Brott et  al., 1989) and the modified Rankin 
Scale (mRS) (Rankin, 1957). Participants with SCI were 
assessed neurologically in accordance with the 
International Standards for Neurological Classification of 
Spinal Cord Injury (ISNCSCI) (Kirshblum et  al., 2011; 
Rupp et  al., 2021). This examination determined the 
American Spinal Injury Association (ASIA) Impairment 
Scale (AIS) grade and the neurological level of injury 
(NLI). The NLI classified participants as having 
paraplegia (T1 and below) or tetraplegia (C0–C8). Age 
and sex were included as demographic variables. The 
self-selected speed for the parcours was calculated as: 
parcours length ÷ elapsed time [m/s]. Prior to completing 
the parcours as a pedestrian, the TUG (Podsiadlo & 
Richardson, 1991) was performed to estimate the 
propensity to fall. As measure of precision of the sensor-
based calculated distance, the relative deviation from the 
actual parcours length was calculated according to the 
formula: Sensor-based distance−Actual parcours length

Actual parcours length
× 100%.

The result of the 10MWT was reported as velocity 
in m/s. For the TUG test, the time required in seconds 
was analyzed. For the daily walking distance, the 
tracked discrete walking activities were summed up. 
For univariate analyses, a grand mean of daily distance 
per subject was calculated by averaging the sum of 
all recorded daily distances over the total number of 
follow-up days.

Statistical methods
Where applicable, variables were aggregated by reporting 
absolute and relative frequencies for nominal variables. 
Continuous variables were summarized by calculation 
of mean values. The standard deviation was chosen as 
a measure of dispersion. The ordinal-scaled numeri-
cal NIHSS variable was also summarized by calculat-
ing the mean, assuming pseudo-continuous scaling. The 
ordinally scaled numerical mRS variable was summa-
rized by absolute and relative frequencies. A mixed lin-
ear model was used to examine relationships between 
relative deviation from the actual parcours length, study 
population (SCI, stroke, or NDS), mobility type, and par-
cours length. Marginal means were estimated to compare 
mean relative deviations across mobility type and study 
population groups. In the NeuroMoves cohort, our pri-
mary aim was to evaluate the direction and magnitude 
of the relationship between standardized clinical walking 
tests (10MWT, TUG) and real-world mobility measures 
derived from inertial measurement units (IMUs) using 
linear regression models. Ordinary least squares regres-
sion was performed using the base R function lm(), and 
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linear mixed-effects models were fitted using the lme4 
package (Bates et  al., 2015). The exact parameterization 
of these statistical models is provided in the supplemen-
tary appendix. All regression analyses were assessed for 
outliers using studentized residuals. Observations with 
studentized residuals exceeding an absolute value of 3 
were considered outliers and excluded from the final 
regression analysis.This threshold was chosen based on 
common statistical practices for detecting influential 
observations in regression analyses. Data wrangling and 
statistical analyses were performed with tidyverse pack-
ages (Wickham et al., 2019) using the IDE RStudio with R 
version 4.4.0–“Puppy Cup”.

Results
Precision of sensor‑based distance calculation
For the precision analysis on a standardized parcours, 57 
participants (20 stroke, 24 SCI, 13 NDS) were recruited 
between August and December 2020. Observations were 
categorized by mobility type—electric wheelchair (EW), 
mechanical wheelchair (MW), or walking—based on 
how participants completed the parcours. Since some 

individuals used multiple mobility types, a total of 81 
mobility-type observations were recorded (32 for the 
188.3m parcours and 49 for the 250.4m parcours). The 
subject characteristics based on sample population by 
mobility type combinations are shown in Table 1. Walk-
ing speed in the parcours was significantly faster in 
NDS as compared to individuals with stroke (pairwise 
difference [mean ± standard error of the mean (SEM)] 
0.3±0.07 m/s, p=0.002) and SCI (pairwise difference 
0.8±0.11 m/s, p<0.001), respectively. In participants with 
SCI, the walking speed was slower as compared to par-
ticipants with stroke (pairwise difference -0.5±0.11 m/s, 
p<0.001). TUG times were shorter in NDS as compared 
to stroke survivors (pairwise difference -6±1.1 s, p<0.001) 
and SCI participants (pairwise difference -10.7±1.73 s, 
p<0.001), respectively. Participants with SCI had longer 
TUG times versus those with stroke (pairwise difference 
4.7±1.77 s, p=0.0304).

In descriptive univariate analyses, the mobility type 
MW was associated with the smallest relative deviation 
from the actual length of the parcours (Fig. 1A). In mul-
tivariate analyses, the actual parcours length effect was 

Table 1  Overview of characteristics of study participants for the sensor validation step

NDS, non-disabled subjects; SCI, spinal cord injury; EW, electrical wheelchair; MW, manual wheelchair; WALK, walking;TUG, Timed-up-and-Go Test; AIS, American 
Spinal Injury Association Impairment scale; NLI, neurological level of injury; NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin score; SD, standard 
deviation.

NDS SCI Stroke

Characteristic MW N = 11 WALK N = 24 EW N = 7 MW N = 14 WALK N = 5 WALK N = 20

Sex, n (%)

female 6 (55) 14 (58) 0 (0) 3 (21) 0 (0) 10 (50)

male 5 (45) 10 (42) 7 (100) 11 (79) 5 (100) 10 (50)

Age [years], Mean (SD) 25 (4) 25 (4) 62 (9) 48 (18) 63 (13) 55 (14)

Parcours speed [m/s], Mean (SD) 1.2 (0.3) 1.4 (0.1) 0.9 (0.2) 0.6 (0.1) 0.6 (0.2) 1.1 (0.3)

TUG [sec], Mean (SD) 5.9 (1.1) 16.6 (3.4) 13.9 (10.1)

AIS, n (%)

11 (100) 24 (100) 20 (100)

A 4 (57) 4 (29) 0 (0)

B 0 (0) 2 (14) 0 (0)

C 2 (29) 2 (14) 0 (0)

D 1 (14) 6 (43) 5 (100)

NLI, n (%)

11 (100) 24 (100) 20 (100)

paraplegia 2 (29) 11 (79) 3 (60)

tetraplegia 5 (71) 3 (21) 2 (40)

NIHSS, Mean (SD) 2 (3)

mRS, n (%)

1 6 (30)

2 8 (40)

3 5 (25)

4 1 (5.0)
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statistically significant and positive (0.06 %/m (95% CI 
0.02, 0.10; p<0.002)). Hence, in the context of negative 
relative deviations in walking participants, the degree 
of underestimation diminishes as walking distances 
increase. Accounting for this actual parcours length 
effect revealed the following relative deviation estimates 
in relation to mobility type (hypothesis test: difference 
from zero): EW: 1.9±1.76% (p=0.28). MW: -1.5±1.03% 
(p=0.15). Walking: -9.8±0.7% (p<0.001) (Fig. 1A).

The sensor-based calculated walking distance was 
uniformly lower than the parcours length across all study 
populations (NDS: -9.5±1.02% (p<0.001); SCI: -14.6±2% 
(p<0.001); Stroke: -8.6±1.17% (p<0.001) (Fig. 1B, Table 2). 
Sensor-based calculated distances in walkers with SCI 
demonstrated more negative relative deviation (higher 
degree of underestimation) of the actual parcours length 
as compared to NDS (-5.1±2.24% (p=0.026) and stroke 
survivors (-6±2.5% (p=0.02)), respectively (Fig.  1B). 
Sensor-based calculated distance estimates between NDS 
and people with stroke were not statistically different.

Sensor‑based real‑world ambulatory daily distance
From May 2021 through July 2022 a total of n=116 par-
ticipants with the ability to walk were recruited, had 
a baseline assessment, and were followed up at two 
scheduled time points (midterm at 4 months and final 
visit at 8 months). The clinical characteristics at base-
line are shown in Table 3. The midterm visit took place 

on average (SD) 131 (15) days and the final visit 253 (21) 
days after the baseline visit (Table 4).

Clinical walking tests
Participants with stroke demonstrated, on average, 
faster walking speeds in the 10MWT and shorter TUG 
times compared to those with SCI (see Table 3). Over-
all, walking speed measured by the 10MWT improved 
over the observation period, increasing from a mean 
(SD) of 0.74 (0.41) m/s at baseline to 0.85 (0.45) 
m/s at midterm and 0.94 (0.49) m/s at the final visit 
(Table  4, Fig.  2A). The TUG times improved from 

Fig. 1  Observed relative deviation of sensor-based calculated distance from actual parcours length for each study participant (gray dots) grouped 
by (A) mobility type and (B) sample population by mobility type interaction. Black squares with error bars represent model-based means ± 2× SEM. 
Abbreviations: EW=electric wheelchair, MW=manual wheelchair, SEM=Standard error of mean

Table 2  Relative deviation from actual parcours length

NDS, non-disabled subjects; SCI, spinal cord injury; EW, electrical wheelchair; 
MW, manual wheelchair; WALK, walking.

Sample 
population

Mobility type Relative 
deviation [%]

SEM p-value

NDS EW

SCI EW 1.1 1.74 0.537

Stroke EW

NDS MW –3.9 1.43 0.008

SCI MW –1.0 1.32 0.431

Stroke MW

NDS WALK –9.5 1.02 <0.001

SCI WALK –14.6 2.00 <0.001

Stroke WALK –8.6 1.17 <0.001
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am mean (SD) of 27 (25) s at baseline to 22 (24) s at 
midterm and remained constant thereafter with 22 
(23) s at the final visit (Table  4, Fig.  2B). The differ-
ences in 10MWT speed were significant between all 
three time points; baseline to final visit: +0.17±0.03 
m/s [mean difference ± SEM], p<0.001; baseline to 
midterm: +0.09±0.03 m/s, p=0.0017; midterm to final: 
+0.08±0.03 m/s, p=0.007. TUG times differed from 
baseline to midterm (-4.7±1.34 s, p=0.006) and base-
line to final visit (-5.5±1.29 s, p<0.001), respectively. 
The TUG difference between midterm and final visit 
was not significant.

Relationship between clinical walking tests 
and sensor‑based data
Each of the three (baseline, midterm, final) visit-based 
discrete 10MWT measurements was associated with the 
ambulatory daily distance as analyzed by linear regres-
sion (Fig.  3A). The regression coefficients [m/(1m/s)] 
were: 874 (95% CI: 578-1171) at baseline (p<0.001), 895 
(95% CI: 614-1176) at midterm (p<0.001), and 824 (95% 
CI: 537-1112) at the final visit (p<0.001). In linear mixed 
model regression analysis (accounting for the repeated 
measures design of daily distance), the 10MWT at base-
line was a main explanatory variable of daily distance. 
As per 0.1 m/s 10MWT speed, the estimated daily dis-
tance was 83.9 m higher (95% CI: 49.7-118.2; p<0.001). 
Although baseline walking speed seems to be a good 
predictor of the daily distance covered, the residual vari-
ance still presents as quite large, particularly in subjects 
with faster walking speeds (see variance of data points 
in Fig.  3A). The additional analysis of the FIM score 
explained some residual variance in this context. We 
could observe an interaction effect between 10MWT 
speed and FIM in linear mixed model analysis (p=0.019). 
When dividing participants based on their walking speed 
into slow (<0.6 m/s) and fast (≥0.6 m/s) walkers (mid-
range speed of limited community walkers defined the 
cutoff (Bowden et al., 2008)), a significant positive corre-
lation between the FIM total score and the daily distance 
covered could only be observed in fast walkers (Fig. 3B). 
Here, the motor FIM domain - as opposed to the cogni-
tive FIM domain–contributed primarily to this associa-
tion (Fig. 3C).

Discussion
Our exploratory study provides insights into the clini-
cal applicability of a wearable activity tracker in assess-
ing real-world mobility in patients with stroke and 
SCI. The tested device demonstrated overall acceptable 
precision under controlled conditions, though varia-
tions were observed depending on the type of mobil-
ity (higher for wheelchair use than walking), the length 
of mobility sequences (greater for longer distances), 
and the study population (more precise in non-disa-
bled than disabled walkers). The greatest measurement 
deviation was observed in individuals with SCI who 

Table 3  Overview of characteristics of NeuroMoves study cohort

1 Pearson’s Chi-squared test; Wilcoxon rank sum test.

SCI, spinal cord injury; 10MWT, 10-meter walk test; TUG, Timed-up-and-Go Test; 
AIS, American Spinal Injury Association Impairment scale; NLI, neurological level 
of injury; NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin 
score; SD, standard deviation.

Characteristics SCI, N = 39 Stroke, N = 77 p-value1

Sex, n (%) 0.35

female 15 (38) 23 (30)

male 24 (62) 54 (70)

Age [years], Mean (SD) 54 (14) 59 (12) 0.076

NLI, n (%) NA

Paraplegic 25 (64)

Tetraplegic 14 (36)

10MWT speed [m/s], Mean 
(SD)

0.6 (0.4) 0.8 (0.4) 0.028

TUG [sec], Mean (SD) 34.8 (31.0) 23.3 (20.7) 0.010

AIS, n (%)

A 2 (5.1)

C 9 (23)

D 28 (72)

NIHSS, Mean (SD) 3 (2)

mRS, n (%)

0 5 (6.6)

1 9 (12)

2 20 (26)

3 38 (50)

4 4 (5.3)

Table 4  Overview of available study assessments for the three NeuroMoves study visits

10MWT, 10-meter walk test; TUG, Timed-up-and-Go Test; SD, standard deviation.

Characteristics baseline, N = 116 midterm, N = 116 final, N = 116

Study visit day, Mean (SD) 0 (0) 131 (15) 253 (21)

10MWT speed [m/s], Mean (SD) 0.74 (0.41) 0.85 (0.45) 0.94 (0.49)

TUG [sec], Mean (SD) 27 (25) 22 (24) 22 (23)
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walked, with an underestimation of approximately 15%. 
As the study design incorporated a commercially avail-
able activity tracker, the aim was not to improve its pre-
cision but rather to assess the extent of measurement 
error. Despite these variations, a strong relationship 
emerged between standardized walking tests (10MWT, 
TUG) and daily distance tracked over 8 months post-
rehabilitation. However, among patients with moderate 
to good walking ability, significant variability remained 
unexplained, suggesting that clinic-based tests do not 
fully capture real-world mobility patterns.

Wearable devices currently available on the market 
face significant challenges in tracking mobility 
for individuals with neurological impairments 
(Kristoffersson & Lindén, 2022; Schneider et  al., 
2018). One of the primary limitations is their inability 
to autonomously distinguish between walking and 
wheelchair use, often requiring active user input. This 
restricts their ability to provide continuous mobility 
monitoring, particularly in patients transitioning 
between walking and wheeling. In our study we 
primarily aimed to use the tested IMU sensor (PHCT, 
Nürnberg) to capture both walking and wheelchair 
distances when attached to footwear. However, during 
our early assessment under controlled conditions, the 
footwear-attached sensor was unable to reliably switch 
between walking and wheeling, resulting in unreliable 
wheelchair distance measurements. Consequently, 
manual repositioning of the sensor to the wheelchair 
wheel using an additional plastic clip was required for 
reliable wheeling distance tracking.

The precision of activity trackers, such as the Fitbit®, 
is known to vary based on mobility type and sensor 
placement, with step counting being most precise 
during treadmill walking and least precise during low-
intensity activities or when using walking aids (Alinia 
et al., 2017; Holubová et al., 2022). Hip-mounted sensors 
seem to be more precise than wrist-mounted trackers 
for step counts (Gaz et al., 2018). Since step recognition 
depends on sensor placement, we positioned the sensor 
on the dorsum of the foot to optimize walking distance 
measurement. Moreover, walking speed plays a critical 
role in sensor precision. Slower walking speeds have been 
associated with increased step-counting errors (Tedesco 
et  al., 2019), and this was reflected in our findings: the 
SCI group, which walked at an average speed of 0.6 m/s—
close to the lower threshold for community ambulation—
had the highest sensor error. Stroke survivors, with a 
mean speed of 1.1 m/s (above the 0.8 m/s threshold for 
community ambulation (Bowden et  al., 2008)), did not 
show significant measurement errors compared to the 
non-disabled sample. Although normative data in NDS 
show that walking speed decreases with increasing 
age (Bohannon & Andrews, 2011), this effect was not 
observed in our patient groups. This may be due to 
stroke or SCI—rather than age—being the primary 
cause of slower walking speeds, with participants with 
SCI and stroke walking slower than all age categories up 
to 79 years in the normative NDS dataset (Bohannon & 
Andrews, 2011). Additionally, the age distribution in 
our stroke and SCI populations was relatively narrow 
(54±14 years for SCI, 59±12 years for stroke), meaning 

Fig. 2  Walking tests results of the NeuroMoves cohort per visit time point (baseline=discharge from inpatient rehabilitation, midterm=4 month 
after baseline, final=8 month after baseline). A Mean ± SD of gait speed assessed with the 10 Meter Walk Test (10MWT). B: Mean ± SD of time 
to conduct the Timed up and Go Test (TUG)
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that not all age categories were represented. As a result, 
the findings cannot be generalized to the full age range of 
individuals with mobility impairments following stroke 
or SCI.

An important clinical finding was that shorter 
walking distances were associated with greater sensor 
underestimation. This likely stems from step-detection 
algorithms that require a certain number of steps before 
initiating distance measurement. This underestimation 
is particularly relevant for individuals with slow walking 

speeds and those who frequently move indoors. Our 
study tested only two specific distances (188m and 
250m). Hence, error extrapolation to shorter or longer 
distances remains speculative.

From a clinical perspective, our findings raise questions 
about the ecological validity of standardized walking 
tests such as the 10MWT. While the 10MWT has 
been validated against broader mobility assessments 
like the modified Rankin Scale (mRS) and the Stroke 
Rehabilitation Assessment of Movement (STREAM) 

Fig. 3  A Scatter plots with regression lines showing the relationship between average daily walking distance and 10 Meter Walk Test (10MWT) 
speed at baseline, midterm and final visits. B Scatter plots with regression lines illustrating the relationship between the baseline Functional 
Independence Measure (FIM) total score and average daily walking distance, stratified by walking speed category (slow: <0.6 m/s, fast: ≥0.6 m/s). 
C Scatter plots with regression lines illustrating the relationship between the baseline Functional Independence Measure (FIM) motor subscore 
and average daily walking distance, stratified by walking speed category (slow: <0.6 m/s, fast: ≥0.6 m/s)
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(Cheng et al., 2021), its ability to reflect actual step counts 
or actual walking distances after hospital discharge 
has not been extensively studied (Fulk et  al., 2017). 
This gap is important, as relying solely on in-hospital 
tests like the 10MWT may overlook significant clinical 
outcomes in everyday environments (Lord & Rochester, 
2005). Ecological validity refers to the extent to which 
test results translate to real-world conditions (Suchy 
et  al., 2024). In this context, our study demonstrates 
that higher 10MWT speeds in a clinical setting (“can 
do”) are associated with greater daily walking distances 
("does do") in stroke and SCI survivors. This finding 
supports the use of the 10MWT results as a proxy for 
real-life walking distances in this population. However, 
this association was not uniform across all patients. 
Faster walkers exhibited greater variability in their 
real-world mobility, a finding consistent with studies 
in multiple sclerosis (MS), where individuals with 
higher 10MWT speeds did not necessarily translate 
this into greater daily walking distances (Stellmann 
et  al., 2015). This discrepancy could be explained by 
residual functional limitations in activities of daily living: 
patients with good walking recovery but persistent 
deficits in other functional domains may remain more 
homebound despite their ability to walk faster. The high 
correlation of the 10MWT and the FIM score in the 
NeuroMoves population, particularly the motor FIM 
subscore, suggests a relationship with the functional 
recovery beyond locomotion. Given that the 10MWT 
only partially explains real-world mobility, continuous 
activity monitoring using wearable sensors could provide 
complementary data to enhance clinical assessments and 
rehabilitation planning.

Our study has several limitations. The reliance on a 
commercially available activity tracker, which did not 
allow for sensor precision enhancements, resulted in 
varying accuracy across mobility modes, particularly 
among SCI patients with walking impairments. Although 
we employed linear regression with adjustments 
for outliers, wide confidence intervals and signs of 
heteroscedasticity indicate that the precision of our 
estimates may be limited. Additionally, the relatively 
small sample sizes further constrain the generalizability 
of our findings.

Conclusions
For individuals with stroke or SCI, particularly those 
with moderate to fast walking speeds, real-world activity 
tracking offers a valuable, clinically meaningful measure 
of mobility. Future rehabilitation studies could employ 
long-term mobility assessments—such as daily distance 
covered—as key outcome measures to evaluate the 
effectiveness of mobility-enhancing interventions.
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